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Electro-magneto-phoresis of slender bodies
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Slender-body asymptotic theory is applied to determine the electro-magneto-phoretic
motion of a freely suspended elongated particle which is arbitrarily oriented relative
to uniformly applied electric and magnetic fields.

1. Introduction
It is well known that the rigid-body motion of a freely suspended particle

embedded in a conducting Newtonian fluid can be remotely controlled by externally
applied electric and magnetic fields through an electro-magneto-phoretic mechanism.
This ability to manipulate the six-velocity motion of a body provides an efficient
method for various engineering applications such as impurity extraction, species
separation, mixing and stirring, and particle manipulation and control. A review of
electro-magneto-phoretic bio-engineering applications was recently given by Watarai,
Suwa & Iiguni (2004).

The electro-magneto-phoretic mechanism, which is due to a rotational Lorentz
body force, was firstly introduced by Kolin (1953). An analysis for spherical particles
was carried out by Leenov & Kolin (1954), and a comparable analysis for ellipsoidal
particles was performed by Sellier (2003a). A general analysis for arbitrary body
shapes was presented by Moffatt & Sellier (2002) using symmetry arguments.
Exploiting the bilinear dependence of the Lorentz force-density term upon the
electric and magnetic fields, together with the linearity of the Stokes equations,
Moffatt & Sellier derived general mobility-type relations for isotropic, axisymmetric
and orthotropic particle shapes.

While the analysis of Moffatt & Sellier (2002) provides the tensorial structure
for the hydrodynamic forces which act upon non-isotropic particles, it does not
give the respective numerical coefficients. In a follow-up paper (Sellier 2003b), a
general boundary-integral formulation scheme is presented. This scheme enables the
calculation of these forces without the need to directly solve the electrostatic and flow
problems. This formulation, which only requires prescribing the value of the potential
and its derivatives on the particle surface, is natural for use in numerical analyses. It
also renders analytic expressions for ellipsoidal particles.

The symmetry analysis of Moffatt & Sellier (2002) demonstrated that the
combination of electric and magnetic fields can result in a rich topology of particle
motion, unparalleled by other (e.g. phoretic) animation mechanisms. Since highly
symmetric particle shapes do not exhibit that richness, it is desirable to analyse more
general shapes, even in an approximate manner: such approximations can be used
for understanding the dynamics and control of non-isotropic particles. Unfortunately,
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the comparable calculation for non-spherical shapes presents a formidable task.
In this work we consider slender particle shapes, which enable the derivation of
asymptotic approximations. Since slender particles commonly appear in colloidal and
biological systems, the present analysis could serve (together with the boundary-
integral formulation of Sellier 2003b) as a modelling tool in various branches of
applied research. Indeed, slender bodies have already been analysed in other field-
driven applications, such as fixed-charge (Solomentsev & Anderson 1994; Sellier 2000)
and induced-charge (Saintillan, Darve & Shaqfeh 2006) electrophoresis.

In the present work, we employ the common assumption (Sellier 2003b) of particle
magnetic permeability which is identical to that of the ambient liquid. Thus, while
the particle modifies the electric field in the fluid due to its different conductivity,
it does not affect the magnetic field. For small particles, on the scale of 1 mm or
less, the Hartmann number is small (Moffatt & Sellier 2002), whence the current is
proportional to the electric field. In that limit, the electrostatic problem is governed by
the standard exterior Neumann problem, which is decoupled from the hydrodynamic
problem.

Since the solution for the harmonic Neumann problem about slender bodies is
well-known (see e.g. Thwaites 1960), the difficulty amounts to dealing with the
hydrodynamics, which for small-particle applications is governed by the creeping-flow
equations. Following Leenov & Kolin (1954), the flow problem is decomposed into
three parts. The first takes account of the Lorentz rotational body force, the second
is introduced so as to retain mass conservation, and the third is used to maintain
the impermeability and no-slip boundary conditions on the particle surface. Using an
axial dipole-distribution representation for the electric potential, we obtain analytic
solutions for the first and second parts. The solution to the third part is then readily
obtained by making use of the Lorentz reciprocal theorem (Happel & Brenner 1965).

Using this approach, we present a general programme for the evaluation of the force
and torque acting on a stationary axisymmetric particle for arbitrary orientations of
the applied fields relative to the particle axis. For a freely suspended particle, the
rectilinear and rotational velocities may be obtained using the appropriate mobility
relations (Kim & Karrila 1991). Motivated by the symmetry arguments of Moffatt &
Sellier (2002), the subsequent analysis is demonstrated for two configurations. In the
first, the electric field, magnetic field, and particle axis are mutually orthogonal. This
results in an axial particle migration. In the second, all three directions are parallel;
for body shapes that lack fore–aft symmetry, this results in a rotation of the body
about its axis.

2. Problem formulation
An insulating particle of characteristic dimension a is positioned within an

unbounded Newtonian liquid of viscosity η, electrical conductivity σ , and matching
magnetic permeability. The fluid domain is denoted by D, and the particle surface by
S. This system is exposed to uniformly applied electric field E = E Ê and magnetic
field B = B B̂, where Ê and B̂ denote the respective unit vectors. Our interest lies in the
resulting hydrodynamic force and torque exerted on the particle, and, consequently,
in the animated motion a freely suspended particle would experience.

2.1. Governing equations

We use dimensionless notation, wherein length variables (and the gradient operator)
are scaled using a, the electric field with E, and electrical potential with aE. The
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Lorentz body force implies the stress scale σEBa (whence the respective scales σEBa3

and σEBa4 for forces and torques), as well as the velocity scale σEBa2/η. Angular
velocities are accordingly normalized with σEBa/η.

The presence of the particle modifies the electric field from its undisturbed value Ê
to Ê −∇ϕ, where the potential disturbance ϕ is governed by the the following exterior
Neumann problem:

∇2ϕ = 0 in D, n̂ · ∇ϕ = n̂ · Ê on S, ϕ → 0 as |x| → ∞ (2.1)

(wherein n̂ is an outward-pointing unit vector normal to S). This field results in the
Lorentz force density distribution

Ê × B̂ − ∇ϕ × B̂. (2.2)

The first term in (2.2) represents a uniform body force; it is balanced by a hydrostatic-
type pressure distribution, which in turn results in the electromagnetic buoyancy force

−V Ê × B̂, (2.3)

and torque

−V xC × (Ê × B̂) (2.4)

which act upon the particle. Here, V is the particle volume (normalized with a3) and
xC is its centroid position vector.

In general, the second term in (2.2) is rotational, and therefore cannot be balanced
by any pressure distribution; thus, it results in a fluid motion. This motion is governed
by the continuity

∇ · v = 0 (2.5)

and the inhomogeneous Stokes

∇2v = ∇p + ∇ϕ × B̂ (2.6)

equations. Here, v is the velocity field and p is the ‘modified’ pressure, additional
to the ‘hydrostatic’ distribution which generates (2.3) and (2.4). These equations are
supplemented by the impermeability and no-slip boundary conditions, which for a
stationary particle are

v = 0 on S, (2.7)

together with the requirement that v decays to zero at large distances from the
particle. We seek to obtain analytic expressions for the hydrodynamic force and
torque engendered by this flow. The case of a freely suspended particle is then readily
obtained by making use of appropriate mobility relations.

2.2. Decomposition scheme

Following Leenov & Kolin (1954), the velocity field is decomposed into three sub-
fields. The first is a particular integral of the inhomogeneous Stokes equation (2.6):

∇2v1 = ∇ϕ × B̂. (2.8)

In general, v1 is not solenoidal; to satisfy the continuity equation (2.5), it is corrected
by a second sub-field which satisfies

∇ · v2 = −∇ · v1, ∇2v2 = 0. (2.9)
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To satisfy the boundary condition on S, the introduction of a third sub-field is
required. It satisfies the standard Stokes equations,

∇ · v3 = 0, ∇2v3 = ∇p. (2.10)

together with the ‘slip’ condition

v3 = −v1 − v2 on S. (2.11)

All three sub-fields must attenuate to zero at large distances from the particle.
Once v1 and v2 are calculated, there is no need to solve for (v3, p), since the

force and torque it delivers can be calculated indirectly using the reciprocal theorem
(Happel & Brenner 1965). According to that theorem, any two flow fields, say v′ and
v′′, that satisfy the Stokes equations (2.10) in a domain D with boundary ∂D, are
related by ∮

∂D
dA n̂ · S′ · v′′ =

∮
∂D

dA n̂ · S′′ · v′. (2.12)

Here, S′ and S′′ denote the respective stress fields which correspond to v′ and v′′,
and n̂ points into D. In the present configuration, where D is the domain outside the
particle, the contribution to the integrals arises from the particle surface, ∂D = S.
Following the method of Brenner (1964), we choose v′ as v3 and v′′ as a field which
corresponds to a pure translation or rotation of the particle. This procedure yields the
desired expressions (expressed as surface quadratures) for the hydrodynamic loads
engendered by v3.

Using this decomposition approach, Leenov & Kolin (1954) calculated the force
acting on a spherical particle. (Having published their work a decade before the
techniques of Brenner (1964) became available, Kolin & Leenov actually went to the
trouble of calculating v3 directly.) Here we consider slender bodies, for which simple
analytic approximations can be obtained using a rational asymptotic scheme.

3. Slender bodies
We consider axisymmetric bodies, described by a unit vector ê attached to the

symmetry axis. This vector may be arbitrarily oriented relative to Ê and B̂. We
employ a body-fixed Cartesian coordinate system xyz with z-axis pointing in the
ê-direction and x-axis in the direction of the transverse component of Ê. The angle
between ê and Ê is denoted by θ . It is also convenient to employ the cylindrical
coordinate r = (x2 + y2)1/2 and the azimuthal angle � about the z-axis. With no loss
of generality, the body extends between z = −1 and z = 1. Its boundary is given by
r = εR(z) where R(z) is an O(1) shape function which satisfies

R (±1) = 0. (3.1)

A schematic of such a body is presented in figure 1.
We focus upon slender shapes for which ε � 1. It is well known that some of the

expansions in slender-body theory involve powers of the small parameter 1/ ln ε; in
that case, a single term in such expansions is only of semi-qualitative value (Tuck
1964), and a true leading-order asymptotic approximation requires two successive
terms in such powers. As is quite standard in slender-body analyses (Cox 1970), we
neglect algebraically small terms in ε.

For slender bodies, the electrostatic problem (2.1) has been solved (Thwaites 1960;
Hinch 1991) by representing ϕ as a dipole distribution along the particle centreline.
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Figure 1. A schematic of a ‘pear-shaped’ axisymmetric particle. The vector B̂ can have any
orientation relative to the axes xyz.

Neglecting algebraically small terms:

ϕ = −ε2

4
cos θ

∫ 1

−1

R2 (z0)
z − z0

s3
dz0 − ε2

2
sin θ

∫ 1

−1

R2 (z0)
x

s3
dz0. (3.2)

The two integrals represent the respective contributions to ϕ from the longitudinal
and transverse components of Ê. Noting that êz = ê, we combine these two integrals
into the invariant form

ϕ = −ε2

(∫ 1

−1

R2 (z0)
s

2s3
dz0

)
·
(
I − 1

2
êê

)
· Ê. (3.3)

Here, I denotes the idemfactor, s = (z − z0) êz + r êr is a relative position vector, and
s = |s|.

The mathematical expression for ϕ about a slender body is similar to that
appropriate for a spherical particle: the former is represented by a dipole distribution,
and the latter by a single dipole (Leenov & Kolin 1954). This resemblance leads us
to obtain a closed-form solution for (2.8),

v1 =
ε2

4
B̂ ×

(∫ 1

−1

R2 (z0)
ss
s3

dz0

)
·
(
I − 1

2
êê

)
· Ê, (3.4)

as well as one for (2.9),

v2 = −ε2

4
B̂ ×

(
I − 1

2
êê

)
· Ê

∫ 1

−1

R2 (z0)

s
dz0. (3.5)

These two key expressions, which can be verified by substitution into (2.8) and (2.9),
allow the analytical treatment of slender bodies.
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The calculation of v1 requires evaluating the following integrals

I1,1 (r, z; ε) =

∫ 1

−1

R2 (z0)

s3
dz0,

I1,2 (r, z; ε) =

∫ 1

−1

R2 (z0)
z − z0

s3
dz0,

I1,3 (r, z; ε) =

∫ 1

−1

R2 (z0)
(z − z0)

2

s3
dz0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

while for the calculation of v2 we need to evaluate the integral

I2 (r, z; ε) =

∫ 1

−1

R2 (z0)

s
dz0. (3.7)

Once I2 is determined, the integrals (3.6) can be directly calculated by using the
relations

I1,1 = −1

r

∂I2

∂r
, I1,2 = −∂I2

∂z
, I1,3 = I2 + r

∂I2

∂r
. (3.8)

We evaluate I2 near the particle, where r = ερ with ρ = O(1). For ε → 0 one can
verify that

I2 (ρ, z; ε) = 2R2(z) ln(2/ε) + R2(z) ln
1 − z2

ρ2
+ f (z) + O(ε2) (3.9)

where

f (z) =

∫ 1

−1

R2 (z0) − R2 (z)

|z0 − z| dz0 (3.10)

is an O(1) function which depends upon the body shape. Note that f (z) is an even
function for bodies which possess fore–aft symmetry.

Thus, the calculation of the net hydrodynamic force and torque exerted on the
body requires three steps: (i) evaluating the force and torque delivered by the
stresses engendered by the fields v1 and v2 (since ∇ · v2 = −∇ · v1, these stresses may
be evaluated based upon the Newtonian expressions for an incompressible fluid);
(ii) evaluate v3 = −(v1 + v2) on S, where ρ = R(z); (iii) Use the reciprocal
theorem (2.12), in conjunction with existing solutions for flows driven by rigid-body
motion of slender bodies, to evaluate the force and torque delivered by v3.

Systematic asymptotic analyses of Stokes flows due to the rigid-body motion of
slender shapes were published at about the same time by Tillett (1970), Batchelor
(1970), and Cox (1970). For our purpose, the latter analysis is most suitable: Cox has
employed inner–outer expansions, wherein the body appears as an infinite cylinder in
the inner analysis and as a Stokeslet line distribution in the outer one. The velocity
fields that correspond to rectilinear and rotational particle (which are to be used as
v′′ in (2.12)), as well as the corresponding stress fields (to be used as S′′), are readily
obtained from Cox’s inner solution.

In principle, the three-step solution procedure can be applied for any arbitrary triad
(Ê, B̂, ê). In what follows, we focus our attention upon two important cases. The first
is a conventional configuration where these three vectors are mutually orthogonal.
In that configuration, Moffatt & Sellier (2002) showed that an axisymmetric particle
cannot experience any torque, but can nevertheless experience a force along the
direction Ê × B̂, just like a spherical particle. In the second case, all three vectors are
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collinear. For that case, Moffatt & Sellier (2002) showed that an axisymmetric particle
cannot experience any force, but can experience a couple about its axis, provided it
lacks fore–aft symmetry. Since the translation and rotation of an axisymmetric particle
are uncoupled in these configurations, a freely suspended particle will migrate along
its axis in the first scenario, and rotate about its axis in the second.

4. The case of mutually orthogonal Ê, B̂, and ê

We consider here the case when the vectors Ê, B̂, and ê are mutually orthogonal,
say Ê = êx and B̂ = êy . For that geometry, the symmetry arguments of Moffatt &
Sellier (2002) imply that the particle may experience a force only in the z-direction,
and no torque.

The representations (3.4) and (3.5) imply that v1 = êzw1 and v2 = êzw2, where

w1(ρ, z; ε) =
ε3

4
(ρI1,2 cos � − ερ2I1,1 cos2 � ), w2(ρ, z; ε) =

ε2

4
I2.

Use of (3.8)–(3.9) furnishes the combined velocity near the particle surface, up to
algebraically small terms:

w1 + w2 =
ε2

4

[
2R2(z) ln(2/ε) + R2(z) ln

1 − z2

ρ2
+ f (z) − 2R2(z) cos2 �

]
. (4.1)

When evaluating the force delivered by this velocity in the z-direction, F1+F2, we note
that n̂ points (up to algebraically small terms) in the radial direction. Accordingly,
only the rz-component of the combined stress due to that velocity is needed for a
leading-order force calculation. This shear stress,

1

ε

∂(w1 + w2)

∂ρ

∣∣∣∣
ρ=R(z)

� −εR(z)

2
,

results in the force

F1 + F2 = −πε2

∫ 1

−1

R2(z) dz. (4.2)

The boundary condition governing v3 adopts the form v3|ρ = R(z) = êzw3(z), where

w3(z) = −[w1 + w2]ρ=R(z)

= −R2(z)

2
ε2 ln(1/ε) − ε2 R2(z)

2

[
ln 2 +

1

2
ln

1 − z2

R2(z)
− cos2 � +

f (z)

2R2(z)

]
. (4.3)

The force delivered by v3 in the z-direction, F3, is next calculated using the reciprocal
theorem (2.12). Here we choose v′′ as a field which corresponds to particle translation
along the z-axis with a unit velocity. Ignoring algebraically small terms, we then find

F3 =

∮
S

dAS ′′
rz(z)w3(z), (4.4)

where S ′′
rz is the rz-component of S′′. Owing to the axisymmetric nature of the

translation problem, this shear stress is given by F/2πεR(z), where F is the respective
force per unit length acting on the particle. The force distribution F(z) was evaluated
by Cox (1970) and in the present notation is given as

F(z) = −2π

[
1

ln(1/ε)
+

1

ln2(1/ε)

(
1

2
− ln 2 − 1

2
ln

1 − z2

R2(z)

)
+ O(ln−3 ε)

]
. (4.5)
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Substitution of (4.3) and (4.5) into (4.4) yields

F3 = πε2

[∫ 1

−1

R2(z) dz +
1

2 ln(1/ε)

∫ 1

−1

f (z) dz + O(ln−2 ε)

]
. (4.6)

In addition to the force delivered by the three sub-fields, the particle also experiences
an electromagnetic buoyancy force (2.3) which here acts in the z-direction with a
magnitude

−πε2

∫ 1

−1

R2(z) dz. (4.7)

Thus, the total hydrodynamic force, obtained by summing (4.2), (4.6), and (4.7), is
given by

−πε2

[∫ 1

−1

R2(z) dz − 1

2 ln(1/ε)

∫ 1

−1

f (z) dz + O(ln−2 ε)

]
. (4.8)

If the particle is freely suspended, it will migrate in the z-direction with a velocity
given by the ratio of (4.8) to the resistance coefficient for longitudinal translation.
This coefficient is readily given by (see (4.5))

4π

{
1

ln(1/ε)
+

1

ln2(1/ε)

[
1

2
− ln 2 − 1

4

∫ 1

−1

ln
1 − z2

R2(z)
dz

]
+ O(ln−3 ε)

}
. (4.9)

Thus, we have obtained an asymptotic approximation for the migration velocity,
which may be evaluated for any prescribed particle shape. For example, for the case
of a spheroid, R(z) = (1 − z2)1/2, we obtain the migration speed

− 1
3
ε2

[
ln(1/ε) −

(
1
2

− ln 2
)

+ O(ln−1 ε)
]

(4.10)

which agrees with results (5.17)–(5.18) of Sellier (2003b).†

5. The case of collinear Ê, B̂, and ê

Next, we focus on the case where the three vectors Ê, B̂, and ê are collinear.
Since the ‘hydrostatic’ force density Ê × B̂ vanishes, one could naively think that
this configuration may not lead to any particle motion (which is indeed the case for
a spherical particle). However, Moffatt & Sellier (2002) indicated that axisymmetric
particles which lack fore–aft symmetry may experience a net couple about their axis.
This possibility is explored herein.

The representation (3.4) implies that v1 = ê�v1, where v1 = ε3ρI1,2/8. Since any
axisymmetric azimuthal flow automatically satisfies the continuity equation (2.5),
no need arises for introducing the complementary sub-field v2 (note, indeed, the
vanishing of (3.5)). Use of (3.8)–(3.9) furnishes the following approximation for v1

near the particle surface:

v1 =
ε3

8
ρ

[
−4R

dR

dz
ln(2/ε) − 2R

dR

dz
ln

1 − z2

ρ2
+

2zR2

1 − z2
− df

dz
+ O(ε2)

]
. (5.1)

Only the z� -component of the stress tensor generated by v1,

ε−1ρ
∂

∂ρ

(
v1

ρ

)∣∣∣∣
ρ=R(z)

� 1

2
ε2R

dR

dz
,

† In equation (5.18) of Sellier (2003b) the ln 2 term was overlooked, as can be verified from
scrutiny of equations (5.4)–(5.6) in that paper.
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is relevant for the evaluation of the leading-order axial torque. This shear stress
results in a torque per unit length of magnitude πε4R3 dR/dz. The end-conditions
(3.1), however, imply that it integrates out to produce a null O(ε4) torque. Thus, the
torque delivered by v1 is o(ε4). As will be readily seen, this torque is dominated by
that delivered by v3.

Since v1 is azimuthal, so must be v3: thus v3 = ê�v3. On the particle surface, where
ρ = R(z), the boundary condition governing v3 adopts the form

v3 =
R2

2

dR

dz
ε3 ln(2/ε) + ε3

[
R2

4

dR

dz
ln

1 − z2

R2
− zR3

4(1 − z2)
+

R

8

df

dz

]
+ O(ε5). (5.2)

The torque delivered by this field about the z-direction, T3, is next calculated by
referring again to the reciprocal theorem (2.12). We choose v′′ as a field which
corresponds to pure rotation about the z-axis with a unit velocity.

In Cox’s (1970) derivation, where algebraic errors are neglected, the velocity along
the actual particle surface is replaced with that along its centreline. Thus, axial rotation
constitutes a special case for which Cox’s method is inapplicable. Luckily, the velocity
field that corresponds to axial rotation can be obtained without resorting to more
accurate asymptotic approximations (such as Geer 1976): in the vicinity of any point
(εR(z), �, z) on S, the velocity v′′ is approximately equal to that corresponding to
the rotation of an infinite cylinder of (constant) radius εR(z).† This is a potential
vortex of azimuthal velocity profile ε2R2(z)/r; the corresponding shear stress on S
is −2. Neglecting algebraically small errors, we then find from (2.12):

T3 = −4πε

∫ 1

−1

R(z)v3(z) dz. (5.3)

Substitution of (5.2) in conjunction with (3.1) furnishes the expression

T3 = −πε4

∫ 1

−1

[
R3 dR

dz
ln(1 − z2) − zR4

1 − z2
+

R2

2

df

dz

]
dz. (5.4)

This O(ε4) contribution dominates the o(ε4) contribution delivered by v1. The integral
in (5.4) is finite for all continuous shapes that satisfy (3.1); these shapes can be either
cusped or rounded at the ends.

For a freely suspended particle, this torque results in an angular velocity. Using the
potential-vortex solution for pure rotation, the resistance coefficient for axial rotation
is readily obtained as

4πε2

∫ 1

−1

R(z) dz.

Accordingly, the resulting angular velocity is given by the expression

−ε2

[
4

∫ 1

−1

R(z) dz

]−1 ∫ 1

−1

[
R3 dR

dz
ln(1 − z2) − zR4

1 − z2
+

R2

2

df

dz

]
dz. (5.5)

Note that this expression vanishes for flip-symmetric particles, in accordance with the
prediction of Moffatt & Sellier (2002).

† This result reflects the non-singular nature of the flow due to rigid axial rotation. In the
comparable problem of rigid translation, it is impossible to find a creeping-flow solution that satisfies
the boundary condition on an infinite cylinder and simultaneously decays at large distances; thus,
the inner field near the particle must be obtained via appropriate matching with a comparable outer
field (Cox 1970).
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The symmetry arguments of Moffatt & Sellier (2002) imply that pure axial rotation
would also occur if the body axis were taken to be perpendicular to the applied fields
(θ = π/2). In the general case, when the axis is oriented at an arbitrary angle θ relative
to the applied fields, the axial torque may be accompanied by an additional torque
about the direction of the applied fields, causing particle precession. Since neither of
these torques affects the value of θ , both the aligned (θ = 0) and the perpendicular
(θ = π/2) configurations are neutrally stable.
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